
SWARM: A Scientific Workflow for Supporting Bayesian 
Approaches to Improve Metabolic Models 

Xinghua Shi1 
1Department of Computer Science 

University of Chicago 
Chicago, IL 60637, USA 

shi@uchicago.edu 

Rick Stevens1, 2 
2Mathematics and Computer Science 

Argonne National Laboratory 
Argonne, IL 60439, USA 

stevens@anl.gov 

 
ABSTRACT 
With the exponential growth of complete genome sequences, the 
analysis of these sequences is becoming a powerful approach to 
build genome-scale metabolic models. These models can be used 
to study molecular components, their activities and relationships, 
and thus achieve the goal of studying cells as systems. However, 
constructing genome-scale metabolic models manually is time-
consuming and labor-intensive. This property of manual model-
building process causes the fact that much fewer genome-scale 
metabolic models are available comparing to hundreds of genome 
sequences available. To tackle this problem, we design SWARM, 
a scientific workflow that can be utilized to improve genome-
scale metabolic models in high-throughput fashion. SWARM 
deals with a range of issues including the integration of data 
across distributed resources, data format conversions, data update, 
and data provenance. Putting altogether, SWARM streamlines the 
whole modeling process that includes extracting data from various 
resources, deriving training datasets to train a set of predictors and 
applying Bayesian techniques to assemble the predictors, inferring 
on the ensemble of predictors to insert missing data, and 
eventually improving draft metabolic networks automatically. By 
the enhancement of metabolic model construction, SWARM 
enables scientists to generate many genome-scale metabolic 
models within a short period of time and with less effort. The 
availability of a large number of metabolic models will lead to a 
new generation of important biological hypotheses and 
experimental designs based on the analysis of these models. 

Categories and Subject Descriptors 
J.3.1 [Computer Applications]: Life and Medical Sciences – 
Biology and genetics.  

General Terms 
Design, Management. 

Keywords 
Scientific workflow, Bayesian approaches, Metabolic models. 

1. INTRODUCTION 
High-throughput sequencing technology in biology and automated 
genome annotation tools in bioinformatics make it possible to 
identify and assign functions to most metabolic genes in an 
organism. These gene functions then can be mapped to 
biochemical reactions that characterize the capabilities of genes 
when they are activated. The sequence and biochemical 
information, together with the strain-specific information of an 
organism, can be integrated and assembled to build a genome-
scale metabolic model. A genome-scale metabolic model attempts 
to capture and represent “all” that is known about the organism 
from annotated genome sequence. Such a model can be used to 
study how an organism performs under various conditions and 
what systemic properties the network possesses.  

Extensive research has been conducted on the methods that are 
applied to build metabolic models. Due to the lack of detailed 
kinetic information, a constraint-based approach, flux balance 
analysis (FBA) [1-3], has been proposed to assess theoretical 
capabilities and operative models of metabolic networks. FBA can 
be applied to study genotype-phenotype relations, identify 
essentiality of genes, and investigate different states the cell may 
have under different situations and so on. At present, FBA is the 
only methodology by which genome-scale models have been 
constructed. [1] 

Although FBA has been under research over 20 years and 
approximately 18 genome-scale metabolic networks for 14 
organisms and cells [4-18] have been built, the speed of 
constructing metabolic networks cannot catch up with the growth 
of the number of organisms with annotated genomes. The number 
of complete genomes is more than 400 hundred and it is 
expanding to reach 1000. This big gap between the number of 
genome-scale metabolic models and the number of available 
complete genomes is largely due to the fact that most of these 
models are reconstructed manually. Building a genome-scale 
metabolic model with thousands of metabolites and reactions is 
time-consuming and labor-intensive. With the number of 
annotated genomes expanding to thousands, it is desirable that we 
produce complex metabolic models in a high-throughput manner. 

To address this problem, we propose and design a scientific 
workflow for supporting Bayesian approaches to improve 
metabolic models (SWARM). SWARM deals with a range of 
issues including the integration of data across different resources, 
data format conversions, data update, and data provenance. 
Putting altogether, SWARM streamlines the whole model 
building procedure by automating the following processes: 
extracting data from various resources; deriving training datasets 
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to train a set of predictors and use Bayesian techniques to 
assemble these predictors; inferring on the ensemble of predictors 
to insert appropriate data; and eventually improving draft 
metabolic networks in a high-throughput way. By the 
enhancement of automated metabolic model construction, 
SWARM enables scientists to generate thousands of genome-
scale metabolic models within shorter period of time and with less 
effort. 

The remainder of this paper is organized as follows.  Section 2 
introduces the background of scientific workflows and metabolic 
modeling, and reviews some related work afterwards. Section 3 
discusses the problem of improving the construction of genome-
scale metabolic models automatically and explains the 
motivations of our work. Section 4 describes our design and 
essential elements of the SWARM workflow. Section 5 explains 
the validation of SWARM and a brief summary with discussions 
is given in Section 6. 

2. BACKGROUND AND RELATED WORK 
Building a scientific workflow is desirable to facilitate the 
development of metabolic models in the rigorous bioinformatics 
and systems biology areas. In this section, we review the 
background of scientific workflows, with a focus on 
bioinformatics workflows. Then we discuss the research that has 
been done in developing metabolic models and present related 
tools. 

2.1 Scientific Workflows  
Scientific workflows attempt to automate scientific processes in 
which tasks are structured based on their control and data 
dependencies [40]. These workflows facilitate scientists to build 
and validate models automatically or semi-automatically, by 
taking a series of steps to collect, analyze, execute, process, 
debug, manage, and visualize data. The goal of building scientific 
workflows is to better support scientists to do their research and 
promote e-Science.  

Lots of efforts have been made to build scientific workflows and 
scientific workflow systems, particularly in the Grid [39] 
community. Yu and Buyya [40] presented a taxonomy that 
characterizes and classifies various approaches for building and 
executing workflows on Grids. In [41], Barker and Hemert 
reviewed the existing business and scientific workflows and 
presented key suggestions towards the future development of 
scientific workflow systems.  

There are a number of scientific workflow systems that have been 
proposed and designed. We list some of the scientific workflow 
systems that can be applied to bioinformatics and life sciences. 
Kepler [42] is an open-source scientific workflow system that 
aims to simplify the access and process of scientific data in 
various domains, with support of web service-based workflows 
and Grid extensions. Kepler provides a formal model for scientific 
workflows based on an actor-oriented design [43] and introduces 
a hybrid type system that separate structural data type from 
semantic type. Taverna [44] is an open-source, Grid-aware 
workflow system that constructs and executes workflows for the 
lift science community. As a part of the myGrid [45] project, 
Taverna enables the scientists to describe and execute their 
experiment processes in a structured, repeatable and verifiable 
way. GPFlow [46] provides a scientific workflow environment 
that supports bioinformatics experiments by wrapping legacy 

tools and presenting an interactive web-based interface to 
scientists. ASSIST [47] is a programming environment that allows 
the design of bioinformatics workflows that can be executed on 
Grid. Swift [48] is a workflow system that supports the 
specification, execution, and management of large-scale 
workflows on Grid.  

However, the problem we try to solve needs a new set of 
components whose specifications cannot be defined in existing 
workflow systems [42-48]. Moreover, the existing workflow 
systems don’t support mechanisms to experiment with various 
approaches for learning and modeling. With the exploration of 
designing a domain-specific workflow to improve metabolic 
modeling, it is possible then to generalize workflow components 
and fit them into existing workflow systems. 

2.2 Metabolic Modeling 
Metabolic Modeling has a long history of research and important 
impact on biology. Generally speaking, there are two primary 
approaches to build metabolic models: dynamic and static 
modeling. The dynamic modeling method intends to simulate 
cellular processes based on fundamental physicochemical laws 
and principles. Although dynamic modeling can produce a 
detailed look at metabolic networks, it requires kinetics 
information that might not be available and ensues huge 
computational cost. Due to the lack of quantitative kinetics data 
and detailed information about every enzyme and cofactor, an 
alternate modeling approach, static modeling, such as flux balance 
analysis (FBA) [1-3] was proposed. The FBA approach views the 
metabolism as a continuous process and studies the steady status 
of this process. Hence, FBA is based on the steady-state 
hypothesis that at the time of study, the network is at steady state 
and each metabolite is balanced even though there are fluxes in 
and out of this metabolite. This steady-state assumption is valid 
for metabolic networks because metabolic transients are much 
faster compared to both cellular growth rates and dynamic 
changes of the environment.  

Building a FBA model only requires information about metabolic 
reaction stoichiometry, medium that the organism may grow on, 
and the measurement of a few other organism-specific parameters. 
All of this information defines the domain of allowable flux 
distributions that may be taken to define an organism’s metabolic 
phenotypes. Within this allowable domain, a single optimal flux 
distribution is sought based on assumed objective function, with 
the aid of Linear Programming techniques. As an approach to 
model an organism’s systemic behavior and make quantitative 
predictions with the absence of detailed kinetics, FBA is feasible 
to build genome-scale metabolic models. These genome-scale 
FBA models have a wide range of applications. They can be used 
to interpret metabolic network behavior, study metabolic states 
and analyze the capabilities of a metabolic network, manipulate a 
metabolic network to produce certain desired products, and 
generate quantitative hypotheses in silico that may be tested by 
wetlab experiments[3,6]. 

Over the past 20 years after FBA was firstly proposed, this 
approach has been studied extensively to construct genome-scale 
metabolic networks. To our best knowledge, approximately 18 
genome-scale metabolic models for 14 organisms and cells have 
been built based on FBA approach. These models have been 
proven successful in performing whole-cell studies with 
explanatory and predictive capacity. Even in cases where FBA 



fails to explain experimental data, the formal treatment and 
analysis of a metabolic network provide powerful tools for 
representing and refining knowledge [3,6]. 

2.3 Related Tools 
One important aspect of building a genome-scale metabolic model 
is to fill the network holes inside the network. These network 
holes happen when the model is incomplete due to missing data. 
Missing data can be anything from missing genes, non-annotated 
genes, to proteins with no reactions associated in databases. In 
order to fill network holes, different types of efforts from various 
groups are carried out. 

Osterman and Overbeek [19] proposed to accelerate the pace of 
discovering missing genes by comparative analysis of a large and 
growing number of diverse sequenced genomes. The SEED 
project [20, 21] is such a peer-to-peer environment to enable 
distributed teams of researchers to rapidly annotate genomes, 
especially microbial genomes. By providing a set of open-source 
comparative genome annotation and analysis tools, SEED enables 
researchers to create, collect, and maintain sets of gene 
annotations organized by groups of related biological and 
biochemical function roles across many organisms. These groups 
of related function roles are called subsystems, and each 
subsystem is essentially a set of biological functions that together 
implement a specific process. Function roles are then mapped to 
biochemical reactions as those accumulated in KEGG [22,23]. 
Kharchenko et al. [24] presented a computational approach for 
identifying genes encoding missing metabolic enzymes in a 
partially reconstructed metabolic network using coexpression 
properties of the metabolic network. By extending this method, in 
[25], Kharchenko et al. provided a mechanism to identify genes 
encoding for a specific metabolic function based on local structure 
of metabolic network and multiple types of functional association 
evidence, including clustering of genes on the chromosome, 
similarity of phylogenetic profiles, gene expression, protein fusion 
events and others.  

Beyond all the manually built models we discussed in Subsection 
B, certain efforts have been carried out to build models in an 
automatic fashion. In [26], DeJongh et al. presented their 
mechanisms in the generation of substantially complete metabolic 
networks for over 400 complete genome sequences currently in 
SEED. Their tools extend subsystems in the SEED to represent 
reaction subnetworks, enhance the curation of associations 
between functional roles and reactions in subsystems, assemble 
and verify reaction subnetworks in subsystems. These efforts 
enable better gene-protein-reaction associations and provide better 
genome-scale metabolic network reconstruction out of SEED. But 
this approach introduces reactions without showing background 
evidences and more importantly, the reconstructed metabolic 
networks are still incomplete and often contain network holes. In 
order to generate valid models and explain the reasons of inserting 
some reactions, further investigation of methods to fill in network 
holes is needed.  

Becker et al. [27] presented CORBA, a toolbox running in the 
Matlab environment, which allows quantitative prediction of 
cellular behavior using FBA approach. Specifically, this software 
allows predictive computations of both steady-state and dynamic 
optimal growth behavior, effects of gene deletions, 
comprehensive robustness analyses, sampling the range of 
possible cellular metabolic states and determination of network 
modules. SimPheny [28] is a commercial software platform that 
enables efficient development of genome-scale metabolic models 
of microbial organisms and their simulation using a constraint-
based modeling approach like FBA. FluxAnalyzer [29] is a 
package for MATLAB to explore structure, pathways, and flux 
distributions in metabolic networks. CellNetAnalyzer [30] is the 
successor of FluxAnalyzer and can be utilized to analyze the 
structure and function of signaling and regulatory networks. 
However, to our best knowledge, these tools don’t provide a 
mechanism to analyze network connectivity and introduce 
plausible reactions to fill in network holes. PathoLogic [31,32] is 
a set of software that uses Bayesian methods to identify missing 
enzymes in predicted metabolic pathway databases. Their system 
is mostly focused on inferring on individual pathways, while 
filling network holes in a genome-scale is still an issue. 

3. THE PROBLEM AND MOTIVATIONS 
In this section, we elaborate the problem of constructing scientific 
workflows to extend genome-scale metabolic models for available 
complete genomes, and present motivations of our work. 

Currently, approximately 18 genome-scale metabolic models of 
14 organisms and cells have been built. But there are hundreds of 
complete genome sequences in databases, for example, there are 
505 complete genomes and 476 complete bacteria genomes in the 
SEED. With the rapid growth of complete genomes, Overbeek et 
al. [33] expects the SEED system to support rapid annotation of 
the first 1,000 genomes to be sequenced. With thousands of 
annotated genomes to be available, it is demanding that 
corresponding genome-scale metabolic models be generated as 
well. In this scenario, producing so many large-scale models by 
hand would be an extremely labor-intensive and time-consuming 
task. A more desirable solution is to build a workflow that can 
automate the model building process including the following 
iterative steps as illustrated in Figure 1:  

1) Extract data from external data resources including the 
KEGG, SEED, BIGG, TCDB, and other data resources; 

 
Figure 1. Overview of Modeling Workflow in SWARM 



Parse and convert different data formats into a congruent 
internal data format; 

2) Analyze the connectivity of draft metabolic networks 
gathered from the SEED; Detect dead end metabolites where 
network holes appear; 

3) Derive training datasets from the data collected, design a set 
of predictors to take account of network properties and 
biological evidences, train predictors on training sets, and 
apply methods such as Bayesian approaches to integrate 
individual predictors; 

4) Derive testing datasets and use the ensemble of predictors 
trained in step 3) to infer plausible reactions that could be 
inserted into draft incomplete metabolic networks and other 
test networks; A collection of reactions are selected to insert 
into networks, according to the results of predictors;  

5) Generate FBA models including stoichiometric matrices, 
constraints and objective functions; Use simulators with 
Linear Programming package such as Mathematica, 
Octave/Matlab, GLPK, and GAMS to run simulations; If the 
models are valid, using the simulation results to predict what 
these metabolic models could produce under various 
conditions and validate the properties of models; These valid 
models can also be visualized using graphviz [34] or Cell 
Designer [35]; If no valid model is generated, go back to 
previous steps and debug models iteratively. 

It is more often that it may take many loops of these steps to 
generate a valid metabolic model. Hence the process to construct 
a genome-scale model requires a large volume of repetitive work 
and continuous tries. In particular, lots of efforts are needed to 
select reactions when there are network holes, which occur due to 
the lack of certain information from data resources. In order to fill 
in these network holes, it is essential to study and debug the 
topology of the metabolic networks. The problem of debugging 
network connectivity and fixing network holes is an essential 
issue to construct genome-scale metabolic models. Most available 
FBA models are created with much work and a large amount of 
time dedicated to fix networks holes. As time goes, the problem of 
manual model building process is more prominent, with thousands 
of annotated genome sequences available. In order to build a 
genome-scale metabolic model for each organism that has been 
and to be sequenced and annotated, it is desirable to automate this 
model building process.  

However, it is a challenge to automate the construction of 
genome-scale metabolic models, thanks to the complexity of 
metabolic networks and the searching for appropriate data to fix 
network holes. Faced up with this challenge, we propose 
SWARM, a scientific workflow that addresses individual 
problems and integrates the model building process to expand 
genome-scale metabolic models automatically. By producing 
genome-scale metabolic networks in mass-production way, 
SWARM will accelerate the process of improving metabolic 
models, based on incomplete knowledge available.  

The modeling workflow as discussed in Figure 1 can be viewed as 
a front-end workflow that deals with modeling. To make it 
possible, there is the other back-end scientific workflow that we 
develop in the aim of supporting this front-end modeling 
workflow. There are many issues that need to be addressed in 

designing and developing the back-end scientific workflow of 
SWARM. We present a list of imperative issues as following:  

1) Version control problem: The databases we extract data 
from, especially SEED and KEGG, are active and frequently 
update their data. Therefore, this updated information needs 
to be piped into SWARM, and reflected in the computational 
and modeling process of the workflow. It should be possible 
to record data provenance in SWARM and keep models up to 
date. 

2) Integration, representation and reconciliation of data from 
various resources: In bioinformatics and systems biology, it 
is an important issue to map data from various resources to a 
common name space. Although efforts have been carried out 
to unite different data name spaces into an integrated format 
such as the work of SBML [36] and Gene Ontology [37], 
there are still a large volume of legacy and upcoming data 
with distinct and even incompatible formats. In this situation, 
integration, representation and reconciliation of data from 
different resources by parsing and mapping is still an 
essential process. A simple example would be the mapping 
of gene identifiers across different databases such as in 
SEED, KEGG and BIGG. As shown in Table 1, the same 
gene could have distinct identifiers in different databases. 
Table 2 shows different reaction names and formulas in 
KEGG and BIGG.  

3) Exception handling: A unique property of biological systems 
is that there are all kinds of exceptions. Although a majority 
of data name spaces can be converted to each other, there are 
exceptions and a collection of data name spaces are hard or 
even cannot be mapped to others. For example, there is no 
matching KEGG reaction for BIGG reaction UNK3.  

Therefore, in order to build a scientific workflow that supports the 
extension of metabolic models automatically, it is required to 
solve all of the problems mentioned above. 

4. SYSTEM OVERVIEW AND ESSENTAIL 
ELEMENTS OF SWARM 
In this section, we overview the system design of SWARM and 
elaborate essential parts of the workflow that deals with 
representation and reconciliation of data from various resources, 
computational complexity and challenges in streamlining the 
process of extending metabolic models using data available. We 
first present the infrastructure of SWARM, a scientific workflow 
to improve genome-scale metabolic models automatically, and 
describe the workflow of using SWARM to build metabolic 
models. We then explain essential elements of SWARM in detail. 

Table 1. Example of Reactions in Various Databases 

KEGG BIGG 
R00226 ACLS 
R02142 XPPT 

 

Table 2. Example of Gene Identifiers in Various Databases 

SEED KEGG BIGG 
fig|83333.1.peg.2111 eco:b2137 b2137, yohF 
fig|83333.1.peg.4176 eco:b4266 b4266, idnO 

 



4.1 System Overview 
The process of building metabolic models based on FBA 
approach is an iterative procedure that starts with extracting 
stoichiometric information from genome annotations. The 
ultimate goal of these metabolic models is to predict phenotypes 
under certain conditions, given the fluxes generated by FBA 
approach. In this scenario, we propose SWARM, a scientific 
workflow that automates the extension of metabolic models using 
Bayesian techniques.  

As illustrated in Figure 1, SWARM takes input from external 
databases to collect information about all known reactions, 
compounds, spontaneous reactions, organism-specific data 
including genome annotations, proteins those genes encode for, 
reactions those proteins catalyze, transporters those transport 
proteins catalyze, and biomass composites of the organism. 
Afterwards, all of the information is parsed and split into training 
datasets and testing datasets in SWARM. We retrieve SEED and 
KEGG for gene annotations, reactions, compounds, subsystems 
and pathways. 

The core infrastructure of SWARM contains three main 
components: the parser that translates data with different name 
spaces from external databases to the unique data name space 
used in SWARM; deadend detectors that check connectivity of a 
draft metabolic network and search for deadend metabolites where 
network holes occur; the ensemble of predictors which is trained 
on training dataset and used to run on testing data. The assembled 
predictors generate candidate reaction lists for draft models, based 
on various evidences including network topology, gene co-
occurrence profiles, gene clusters on chromosomes, KEGG 
Orthology, KEGG pathway maps and network modules. After 
filling network holes with selected reactions from candidate lists, 
metabolic models are fed into simulators with various linear 
programming environments. Based on simulation results, 
properties of a metabolic model can be validated and verified. 
These properties include that the cell can grow, interactions 
among metabolites should agree with biochemistry and the cell 
should possess certain extent of robustness. These models can also 
be visualized using network visualization tools like graphviz or 
CellDesigner.  

A bigger picture of the Chicago Systems Biology Global 
Workflow is shown in Figure 2. SWARM sits right after (divided 
by a dotted vertical line) SEED and contributes to the global 
workflow significantly by completing it. SEED is tended to 
accumulate complete genomes, perform semi-automated feature 
identification and annotation, run subsystem analysis and finally 
determine a reaction set that comprises a draft model. Afterwards, 
SWARM generates stoichiometric matrix from the reaction set, 
insert spontaneous reactions and transport information to build a 
FBA model. Based on constraints and observations of the model, 
we can predict phenotypes under these constraints and 
observations. Combing SEED and SWARM together, the global 
workflow predict genotype-phenotype relationships and carry out 
systemic analysis on thousands of complete genomes. 

4.2 Essential Elements of the Workflow 
SWARM takes input from various distributed and local data 
resources, processes them computationally and outputs genome-
scale metabolic models. Five essential elements of SWARM can 
be categorized as the following.  

1) Integration, representation and reconciliation of various data:  

In bioinformatics, it is of great importance to integrate data from 
various resources, cross-reference and match them, discover 
related piece of information such as aliases, reconcile unmatched 
or incompatible information. The data collected as inputs to 
SWARM has different and even incompatible name spaces. In 
general, data used in SWARM is extracted from three main 
distributed resources: KEGG, SEED and existing genome-scale 
metabolic models including BIGG, which is a repository of 
genome-scale metabolic models. Transport information extracted 
from TCDB and published models, together with a set of 
spontaneous reactions is accumulated as well. Since data from 
these different places have different name spaces, it is required to 
convert them into a common name space in SWARM.   

Faced up with this problem, we study dependencies of these data 
name spaces and build a set of tools to streamline the mapping 
process which project different name spaces to a common name 
space. The first category of mapping is focused on building a 
mapping table inside individual data resources. Since we extract 
annotated sequences from SEED and based our workflow on the 
SEED environment, we firstly extract mappings among SEED 
gene identifiers, gene aliases (the genes names in other databases 
including in KEGG), functional roles, EC numbers, FigFam 
(protein family in SEED) identifiers, and KEGG reaction 
identifiers. Secondly, from KEGG, we extract mappings among 
KEGG gene names, K numbers (KEGG Orthology, abbreviated as 
KO), and KEGG reaction identifiers. We also download other 
information from KEGG including the organism list, compound 
list, reaction list, KO list, reaction lists, pathway maps and 
network modules. Thirdly, from published genome-scale 
metabolic models including BIGG, we extract mappings between 
gene abbreviations and reaction identifiers used in existing 
models. For each model, files containing gene-protein-reaction 
associations, compound and reaction lists, biomass compositions 
and other information are extracted as well. These files related to 
existing models are generated by our mapping tools, running on 
the data in the supplementary of their papers or that stored in 
BIGG. Notice that BIGG uses a distinct set of representations of 
genes, compounds and reactions.  

Besides building mapping tables inside individual data resources, 
in order to streamline the workflow, we generate a large collection 
of tables mapping across different resources. These tables include 
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mappings from SEED organism names to KEGG organism 
abbreviations, from SEED gene identifiers to KEGG gene 
identifiers, from KEGG genes to SEED protein families 
(FigFams), from KO identifiers to Figfams, from BIGG genes to 
SEED genes, from BIGG genes to FigFams, from KEGG 
compound identifiers to compound abbreviations used in BIGG, 
from KEGG reactions to BIGG reactions.  

Most tables are built automatically by tools, nonetheless, manual 
work is involved in mapping KEGG compound to BIGG 
compound and KEGG reaction to BIGG reaction. In the process 
of reconstructing Staphylococcus aureus N315 [7] and 
Escherichia coli K-12 [5] to use them as our reference models, we 
extract compound lists in the two published models. For 
compounds in the two models that don’t have corresponding 
KEGG compound identifiers, we look at their chemical formulas 
and try to expand the mapping table to include compound 
mappings that have reasonably similar chemical formulas.  

As a result of the work in [26] to reconstruct existing model of 
Staphylococcus aureus N315, a list of mapping KEGG reactions 
to BIGG reactions is produced. The authors also curated the 
mapping of SEED function roles to KEGG reactions both 
manually and automatically by incorporating their scenario 
mechanism into SEED. From the table of KEGG reactions to 
BIGG reactions generated by [26], we keep a growing list of the 
mapping from KEGG reactions to BIGG reactions. For example, 
the E.coli iJR904 model has 931 reactions including 747 reactions 
and 184 transports. Out of the 747 reactions, 515 BIGG reactions 
were mapped to KEGG ones by [26]. 232 reactions plus 184 
transports in the iJR904 model are not mapped to KEGG 
reactions.  

There are no transport reactions in KEGG, so we write tools to 
construct transports based on the mapping of BIGG compounds 
and corresponding KEGG compounds. This generates 180 
transport reactions in SWARM out of 184 transports in the iJR904 
model. As shown in Table 3, T00021, where E02917 is an 
extracellular compound and C02917 is an intracellular compound, 
is generated for BIGG transport 12PPDt, where ‘[e]’ indicates 
extracellular compound and ‘[c]’ stands for intracellular 
compound, based on BIGG compound “12ppd-S” is mapped to 
“C02917”. Only 4 BIGG transports cannot be created since there 
are no matching KEGG compounds. 

As a fact, capturing transport information is a very difficult issue 
to extend metabolic models. Transports are those important fluxes 
that carry specific nutrients, ions, etc. through cell membranes. 
Unfortunately, they are not well recorded or annotated. In order to 
characterize fluxes in and out of the cell membrane of an 
organism, a complete list of transports for an organism is needed. 
Although KEGG incorporates a growing database of thousands of 
biochemical reactions, it does not include transport information so 
far. SEED is in the process of incorporating more transport 
information into annotations of genomes, but there are still a 
limited number of transporters. Under these circumstances, we 
consult TCDB [38] as references and build a local version of 
transport information specific to modeling organisms. In our 
transport list, we also manually incorporate transport information 
from published genome-scale metabolic models and BIGG. 

However, SEED and all published genome-scale metabolic 
models including those in BIGG only include information 
encoded in annotated genomes. None of these data resources 

includes spontaneous reactions, which happen without help from 
any gene product, therefore we accumulate a set of 336 
spontaneous reactions listed with KEGG reaction identifiers, and 
insert them into models automatically. 

2) Issues of collecting data from frequently updated sources:  

Databases we extract data from, especially SEED and KEGG, are 
actively expanding and updating. Therefore, we need to pump in 
this updated information into SWARM, and reflect these updates 
in the computational and modeling process of the workflow. As 
SEED provides APIs to access services provided by SEED and 
SWARM is built to integrate with SEED, we develop a collection 
of tools that use SEED APIs to extract data. Periodically, we re-
run these tools to incorporate updates from SEED. In this 
scenario, SWARM can be viewed as a downstream of SEED and 
together with SEED, SWARM completes the Chicago Systems 
Biology Workflow as illustrated in Figure 1.  

KEGG provides a set of WSDL APIs by building an API server 
using the SOAP technology [23]. These APIs enable users to 
write code that extracts data from KEGG automatically. Although 
WSDL is convenient to access remote data, it is rather slow to 
retrieve large amount of data. Using WSDL APIs KEGG 
provides, it takes days and days to retrieve the whole database 
with 2,912,739 genes, 15,050 compounds, 7,521 reactions, 71,826 
pathways, 10,705 KO groups, and other information in 55 
eukaryotes, 588 bacteria and 49 archaea. This large volume of 
data is updated frequently and the update affects data 
manipulations in SWARM. Therefore, In order to speed up the 
data retrieving process and reflecting the frequent update from 
KEGG, we use Rsync [50], a tool that provides fast incremental 
file transfer, to access their ftp server and download up-to-date 
data in KEGG. Afterwards, a series of tools are re-run to update 
mapping tables and other local data. More effective and probably 
more intelligent updating mechanisms are under investigation to 
immediately incorporate updates in SWARM.  

Less frequently but from time to time, they are new genome-scale 
metabolic models published. We extract data from published 
results and BIGG, and parse out the information needed in 
SWARM.   

Version control systems are introduced in the SWARM workflow 
to store and retrieve all versions of data in the repository. 
Together with data provenance mechanism to be discussed in Item 
3), it is possible to identify and propagate changes throughout 
SWARM. 

3) Data Provenance: 

Data provenance is the derivation history of a data product, 
starting from its origin sources [49]. Achieving data provenance is 
an essential task in a dynamic scientific workflow. In SWARM, 
versions of code, parameters, resource versions, inputs and 
outputs to various tools, and auxiliary information are recorded by 

Table 3. Example of Transport Reactions  
Created in SWARM 

BIGG SWARM 
ENTRY EQUATION ENTRY EQUATION 
T00021 E02917 <=> 

C02917 
12PPDt 12ppd-S[e] <=> 

12ppd-S[c] 
 



log files. The logging mechanism enables simple but effective 
data provenance. 

4) Preprocess of data:  

Besides building mapping tables as stated in Item 1) in this 
Subsection, it is desirable to preprocess some of the data 
considering large volume of data, frequent exceptions and 
computational complexity. Preprocessing of data occurs in the 
whole process of SWARM and we list three primary types here. 

a) Balance reactions: Reaction lists in KEGG contain unbalanced 
reactions in mass and/or charge. In order to generate correct 
stoichiometry for modeling, mass and charge balance of these 
reactions is preferred. Hence, we develop a set of tools to balance 
KEGG reactions. The main procedure is as follows: For each 
reaction, its reaction formula is parsed to generate a list of 
reactants and products; The total charge/mass of reactants and the 
total charge/mass of products are compared and the difference is 
calculated; Then search through the compound list in KEGG and a 
matching compound is inserted into the reaction formula. In most 
cases, the charge unbalance of a reaction is caused by the missing 
proton (H+), while the missing of water molecule (H2O) leads to 
the mass unbalance of a reaction.  There are cases where no 
matching compound can be inserted into the reaction formula to 
make it balanced. Manual work is carried out in these cases. 

b) Break networks into pathway segments: A key strength of 
SWARM is the ability of filling network holes to extend 
metabolic models. In order to find candidate reactions to fill 
network holes, a set of predictors based on various evidences are 
built. These evidences form a hierarchy of gene-level, network-
level to topology-level evidences. At the network-level, we have 
four different types of networks that are under investigation. The 
first type of data is KEGG reference pathway map, part of which 
is illustrated in Figure 3. This reference pathway map captures all 
known possible biochemical reactions in KEGG. The second kind 
of data is the organism’s specific pathway map that is composed 
of reactions mapped by KO in KEGG, and there are totally 758 
such maps.  The third group of data is the draft reconstruction 

from scenarios [26] for each complete genome in SEED, and there 
are 558 such maps. The fourth type of data includes two 
reconstructed genome-scale metabolic models available from 
published data. 

Each of these networks is broken into pathway segments with 6 or 
less than 6. For example, a small network as shown in Figure 4 
can be broken into a series of pathway segments with length of 2 
to 6. Table 4 lists part of these pathway segments leading with 
starting compound identifier. 

Then the number of reaction pairs in these pathway segments for 
every network-level evidence is calculated. As shown in Table 5, 
for KEGG reference pathway map with 4953 reactions, there are 
148,377 pathway segments with length from 2 to 6. Therefore 
instead of reading the map, breaking it into segments and handling 
these segments at each run of the workflow, we preprocess 
pathway maps, parse the segments and save the intermediate data 
at retrievable places. The same type of preprocessing is performed 
for KEGG modules, draft metabolic models and published 
models.  

c) Compute gene co-occurrence profiles: Gene co-occurrence 
profiles, which indicates the co-occurrence of gene pairs in SEED 
are used to build predictors at gene-level.  We extract all the 
gene/protein families (noted as FigFams) in SEED and calculate 
co-occurrences of FigFam pairs across all complete bacteria 
genomes.  From SEED, we extract 98, 850 Figfams and 449 
complete bacteria genomes. Therefore, we have to compute 
computational probabilities of gene pairs by (98, 850 × 98, 850) 
that co-occur in 449 organisms in SEED. As shown in Table 6, we 
have a matrix with the size of 98, 850 by 449. Each genome has 
an entry in this matrix, and the value is 1 if a FigFam occurs in 
this genome and 0 otherwise. To calculate the probability of (98, 
850 × 98, 850) gene pairs, we have to build a nested loop with 
three levels, each containing respectively 98850, 98850 and 449 

 

Figure 3. Part of KEGG reference pathway map 
 

 
Figure 4. A simple example part of a metabolic network 

Table 4. Part of Pathway Segments from the  
Network in Figure 4. 

Leading Compounds Pathway Segments 
C00119 R01071 R04035; 
C00119 R01071 R04035 R04037; 
C00119 R01071 R04035 R04037 R04640; 
C00119 R01071 R04035 R04037 R04640 

R04558; 
C02739 R04035 R04037; 

… … 
 



steps. Even with the help of sparse matrix manipulation, this 
calculation process still takes hours to complete and generates 
approximately 40 gigabytes of data. So calculating gene co-
occurrence on the fly is significantly slow and we precompute this 
information for later use. Currently, this computation is achieved 
on a single machine but it is under investigation to perform this 
computation and other computation-intensive tasks on distributed 
systems such as TeraGrid and supercomputers such as BlueGene. 

By preprocessing data, we not only speed up later process and 
remove repeated data handling, but also detect and deal with 
exceptions as early as possible.  

5) Exception Handling: 

Whenever exceptions happen, we filter out and record them. With 
the help of assistant tools, manual work is applied to check and 
solve these exceptions. In this process, domain knowledge of 
biology and/or chemistry is needed. For example, there are 232 
BIGG reactions in E. coli model [5] that are not mapped to KEGG 
reactions using parsing tools as discussed in Item 1). To map this 
set of reactions as best as possible, we design tools that parse out 
reaction formulas of BIGG reactions, generate reactant compound 
sets and product compound sets for reaction formulas from two 
formats, reconstruct BIGG reaction formulas with BIGG 
compound abbreviations replaced by corresponding KEGG 
compound identifiers, compare with KEGG reaction formulas to 
search for the most similar form of KEGG reaction reactions. If an 
exact form of some KEGG reaction exists for this BIGG reaction, 
we add this KEGG-BIGG reaction association to our mapping 
table. If no exact match exists, we look at the reaction and 
investigate at corresponding functional role, EC number, KEGG 
pathway map to find an appropriate mapping of this BIGG 
reaction to a KEGG reaction with confidence of different level, 
and record this confidence in reaction mapping table. We then 
filter out those reactions with high confidences to be used in 
SWARM. The process above generates 122 mappings and after 
that, it leaves us 120 BIGG reactions that have no matched KEGG 
reactions. Currently, we leave these 120 BIGG reactions out of the 
reconstructed E. coli model and further investigation is needed to 
match these reactions. 

5. VALIDATION 
Testing and validation are essential steps to build models with the 
help of a scientific workflow. Therefore, it is necessary and 
valuable to validate SWARM by testing. Our validation 
mechanism includes experimenting with testing data including 
examples of different sizes.  These examples involve 
approximately 1000 synthetic examples with 3~10 reactions and 
two reconstructions of published models [5,7] with hundreds of 
reactions. Results gained from these experiments will help refine 
SWARM. After training on these examples and known models, 
we extend draft models for those organisms without published 
models, with the goal of testing prediction mechanisms and 
SWARM. 

6. DISCUSSIONS AND SUMMARY 
It is a challenge to automatically improve genome-scale metabolic 
models, due to the complexity of these models and the large 
volume of related information embedded in various data 
resources. However, there is an increasing need to extend 
genome-scale metabolic models for each organism with annotated 
genome, with the exponential growth of complete genomes. Our 
efforts to handle this problem lead to the design of SWARM, a 
scientific workflow for supporting the extension of genome-scale 
metabolic models. SWARM takes input from various databases, 
and generates metabolic models that can be simulated in different 
mathematical simulation environments.  

Our contributions include building a scientific workflow that 
allows automatic construction of genome-scale metabolic models, 
a set of tools including a set of predictors based on various 
evidences and an ensemble of reaction predictors that can be used 
to improve metabolic models. These genome-scale metabolic 
models can be used to assemble components in the genome 
sequences, study how organisms behave under different 
situations, and thus perform systemic analysis of organisms to 
shed light on genotype-phenotype relationships.  

After the development of SWARM is completed and mature, we 
plan to generalize all of the components and implant the entire 
workflow to the Swift workflow system. It is then possible to 
perform computation-demanding gene knockout experiments on a 
large number of metabolic models by running on large-scale 
distributed systems like TeraGrid and supercomputers such as 
BlueGene. Future work also includes the update of data from 
various databases more automatically, report exceptions and 
reflect the update in following executions in SWARM. 

From our experiences working with the SWARM workflow, we 
find that there is a collection of issues that should attract more 
attention and get addressed better. For example, due to frequent 
update of biological and bioinformatics databases, it is demanding 
that version control, exception handling, data and information 
provenance be achieved more elegantly. These issues are 
extremely important in building bioinformatics workflows. 
Therefore, computer science, bioinformatics, and systems biology 
communities need to work together to address this data 
complexity problem. We believe that an automatic workflow from 
database to model is an important step in dealing with complex 
data. The availability of a large number of metabolic models will 

Table 5. General Statistics of the KEGG 

# genes # KOs # reactions # compounds # reactions in 
reference map 

# reactions in 
modules 

# reaction pairs 
in segments of 
reference map 

# reaction pair s 
in segments of 

modules 
2,912,739 10,705 7,521 15,050 4953 1353 148377 36271 

 

Table 6. Part of Gene Co-occurrence Matrix in SEED 

 Figfam1 Figfam2 … Figfam 98, 850 
Genome 1 1 0 … 0 
Genome 2 1 0 … 1 
Genome 3 1 1 … 0 

… … … … … 
Genome 449 1 1 … 1 

 



lead to a new generation of important biological hypotheses and 
experimental designs based on the analysis of these models. 
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